|
СЕМИНАРЫ |
Некоммутативная геометрия и топология
|
|||
|
Новые эффективные формулы для канонического оператора Маслова и приложения С. Ю. Доброхотов |
|||
Аннотация: Обсуждаются новые конструктивные формулы для канонического оператора Маслова, полученные в работах С.Ю.Доброхотова, В.Е.Назайкинского и А.И.Шафаревича, основанные на интегральных представлениях в окрестности каустик (лагранжевых сингулярностей) в виде интегралов по координатам на соответствующих лагранжевых многообразиях. Такие представления позволяют во-первых существенно упростить асимптотики решений многих задач для линейных дифференциальных и псевдодифференциальных уравнений и во-вторых расширить класс задач, в которых можно применить канонический оператор. Также обсуждается подход, позволяющий для ряда задач выразить глобально асимптотику решения в виде канонического оператора Маслова через специальные функции сложного аргумента, например функции Эйри, Бесселя и др. В качестве примеров рассматриваются задача о Кеплеровых траекториях в рассеянии и в асимптотике типа функции Грина на отталкивающем кулоновском потенциале, задачи Коши с локализованными начальными данными и др. Доклад основан на совместных работах с В.Е.Назайкинским, А.И.Шафаревичем, А.Ю.Аникиным, С.Б.Левиным, А.А.Толченнниковым, А.В.Цветковой, А.И.Клевиным. Идентификатор конференции: 844 3430 3199 Код доступа: 991937 |