Аннотация:
Пусть $G$ — группа, $K$ — ее подгруппа, пусть $K\backslash G/K$ — пространство двойных классов смежности. Оказывается, что для «бесконечномерных групп»
$G$ это фактор-пространство обладает естественным ассоциативным умножением. Естественность, например, означает, что для любого унитарного представления
группы $G$ в пространстве $K$-неподвижных векторов действует полугруппа двойных классов (первый такой пример был обнаружен Исмагиловым в 1960гг.). Это бывает, в частности, для бесконечномерных групп матриц (над вещественным, конечным или $p$-адическим полем), для симметрических групп. Эти полугруппы удается явно описывать, и это приводит, с одной стороны, к неожиданным алгебраическим
структурам, а с другой — к явным описаниям фактор-пространств на комбинаторном или геометрическом языке, причем эти описания работают и в конечномерной ситуации.
Цель лекций — явные описания инвариантов и мультипликативных структур (унитарные представления будут присутствовать лишь в качестве необходимого фона).
В частности, предполагается обсудить такие примеры:
$G$ — произведение нескольких бесконечных симметрических групп, $K$ — диагональная подгруппа (или меньшая симметрическая подгруппа в диагонали).