RUS  ENG
Полная версия
СЕМИНАРЫ

Общеинститутский семинар «Коллоквиум МИАН»
11 мая 2023 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)


Аналитическое продолжение функции Лауричеллы и конформное отображение многоугольников

С. И. Безродных

Федеральный исследовательский центр «Информатика и управление» Российской академии наук, г. Москва


https://youtu.be/dRDRrl-PVco

Аннотация: В докладе рассматривается функция Лауричеллы, являющаяся гипергеометрической функцией $N$ комплексных переменных. Эта функция удовлетворяет системе $N$ линейных уравнений с частными производными, а в единичном $N$-мерном поликруге записывается в виде $N$-кратного ряда Тейлора. При произвольном $N$ указан полный набор формул аналитического продолжения функции Лауричеллы за границу $N$-мерного поликруга. Такие формулы представляют эту функцию в подходящих подобластях $N$-мерного комплексного пространства в виде линейных комбинаций других обобщенных гипергеометрических рядов, являющихся решениями той же системы уравнений с частными производными, которой удовлетворяет функция Лауричеллы. Построенные формулы дают эффективный алгоритм для вычисления функции Лауричеллы во всем комплексном пространстве. В докладе обсуждается приложение полученных результатов к решению проблемы параметров интеграла Кристоффеля–Шварца и вычислению конформного отображения многоугольников сложной формы.


© МИАН, 2024