|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2023
|
|||
|
Разбиения многообразий на ручки. В сторону теоремы об h-кобордизме. Семинар 3 А. Д. Рябичев |
|||
Аннотация: Многообразия — без сомнения, ключевое понятие в современной математике, появляющееся буквально во всех её областях, от алгебры и теории чисел до топологии и математической физики. Про многообразия можно думать как про геометрический объект, склеенный из (возможно, изогнутых) кусков евклидова пространства. Одномерные многообразия — окружность и прямая; двумерные — сфера, тор, проективная плоскость... Начиная с размерности 3 их представить себе уже довольно сложно, но всё же можно пытаться описать и классифицировать. Существует много приёмов работы с многообразиями, приходящих как из дифференциальной геометрии, так и из алгебраической топологии. Кобордизмы удивительным образом имеют отношения к обоим этим мирам и устанавливает между ними довольно неожиданные связи. Сам по себе кобордизм между двумя многообразиями Основное внимание в этом курсе будет уделено не кобордизмам вообще, а конкретному результату — теореме об Примерная программа. 1. Многообразия. Функции Морса, индексы критических точек. Разбиения на ручки. 2. Гомеоморфизмы, диффеоморфизмы и гомотопические эквивалентности. h-Кобордизмы. Вывод гипотезы Пуанкаре. 3. Трансверсальность, трюк Уитни. Операции над ручками. 4. Комплекс Морса, приведение матриц инцидентности к диагональному виду. Окончание доказательства. Пререквизиты. Для комфортного восприятия курса будет полезно немного быть знакомым с топологией, анализом функций многих переменных и линейной алгеброй. Однако без всех этих предварительных знаний можно обойтись, изложение будет часто неформальным, и пространственного воображения должно быть достаточно. Website: https://mccme.ru/dubna/2023/courses/ryabichev.html
|