Аннотация:
Система элементов $\{x_n\}_n$ бесконечномерного топологического векторного пространства $X$ называется представляющей для $X$, если любой элемент пространства раскладывается в сходящийся ряд по элементам $x_n$ с некоторыми коэффициентами. Изучение представляющий систем началось с работ A. Ф. Леонтьева, который доказал, в частности, что любую аналитическую функцию в ограниченной выпуклой области можно представить рядом экспонент (показатели экспонент зависят только от области). В докладе будет описана элементарная конструкция построения представляющих систем из “ядер Коши” в пространствах Харди $H^p$ в шаре и полидиске, а также представляющих систем из воспроизводящих ядер в некотором классе весовых пространств Харди в круге.
|