RUS  ENG
Полная версия
СЕМИНАРЫ

Общегородской семинар по математической физике им. В. И. Смирнова
18 декабря 2023 г. 15:00, г. Санкт-Петербург, ПОМИ, ауд 311, онлайн-конференция zoom


A sharp Poincare inequality for functions from $W^{1,\infty}$

S. V. Zelikabc

a University of Surrey
b State University – Higher School of Economics, Nizhny Novgorod Branch
c Zhejiang Normal University


https://youtu.be/yMV3I8EYZp8

Аннотация: For each natural number n and any bounded, convex domain $\Omega\subset\mathbb R^n$, we characterize the sharp constant in the Poincaré inequality for $L^\infty$-norms of a function and its first derivatives. We calculate explicitly the constant for the case of a unit ball and show that, among convex domains of equal measure, balls have the best, i.e. smallest, Poincaré constant.


© МИАН, 2024