Аннотация:
В докладе исследуется вопрос существования решения уравнения $f(x)=y$, в котором $f$ – это гладкое отображение вещественных конечномерных пространств, $y$ – это параметр, значения которого близки к $f(x_{\circ})$, а $x$ – это неизвестное. Будет введено понятие $\lambda$-укорочения отображения $f$ в точке, дано определение регулярного направления для $\lambda$-укорочения и сформулированы достаточные условия разрешимости уравнения. Будет проведено сравнение приведенных результатов с известными.