|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2024
|
|||
|
Разрешающая процедура для теории вещественно замкнутых полей. Семинар 1 С. О. Сперанский |
|||
Аннотация: Элементарные теории (чей язык содержит только кванторы по элементам носителя) — ключевой объект изучения в математической логике. Многие известные результаты связаны с изучением алгоритмических свойств элементарных теорий различных классов структур — графов, решёток, групп, колец и т.п. — и их фрагментов. Пожалуй, наиболее известным «положительным» результатом в этой области является теорема Тарского–Зайденберга о разрешимости теории упорядоченного поля вещественных чисел, совпадающей с теорией вещественно замкнутых полей: существует алгоритм, который по произвольному предложению в языке упорядоченных полей определяет, истинно ли оно над вещественными числами. В качестве простого следствия отсюда получается разрешимость теории поля комплексных чисел, совпадающей с теорией алгебраически замкнутых полей, а также разрешимость элементарной геометрии (на вещественной плоскости), где язык содержит трёхместный предикат « Цель данного мини-курса — познакомить слушателей с доказательством теоремы Тарского–Зайденберга и её основными приложениями, а также рассказать о контрастирующих с ней «негативных» результатах, связанных с кольцами и полями. Предварительный план 1. Метод элиминации кванторов — основной метод доказательства разрешимости элементарных теорий. 2-3. Разрешимость теории поля вещественных чисел, теорий поля комплексных чисел и элементарной геометрии. 4. Семнадцатая проблема Гильберта и её обобщение на произвольные вещественно замкнутые поля. Результаты о неразрешимости, связанные с кольцами и полями. Website: https://mccme.ru/dubna/2024/courses/speranski.html
|