|
ВИДЕОТЕКА |
«Современные методы нелинейной динамики»
Школа для молодых механиков и математиков
SYMM 2024
|
|||
|
Приближенные дисперсионные соотношения для анализа и дизайна численных моделей механики сжимаемых сплошных сред с жесткими релаксационными слагаемыми О. П. Стояновская Институт гидродинамики им. М. А. Лаврентьева СО РАН, г. Новосибирск |
|||
Аннотация: Математические модели многих процессов в механике сплошных сред (МСС), физике плазмы (ФП) и астрофизике (АФ) представляют собой уравнения в частных производных (УЧП). При создании компьютерных моделей эти уравнения заменяются дискретными уравнениями, которые решаются численно. Для исследования математических и численных моделей МСС, ФП и АФ развита техника построения дисперсионных соотношений. Дисперсионные соотношения описывают волновые процессы (процессы переноса возмущения со скоростью, отличной от скорости движения вещества) в средах. Классическое дисперсионное соотношение – это нелинейное алгебраическое уравнение (связывающее параметры волны – волновое число |