RUS  ENG
Полная версия
ВИДЕОТЕКА

Научная сессия МИАН, посвященная подведению итогов 2025 года
18 ноября 2025 г. 15:00, г. Москва, МИАН, ауд. 104 + online


Многомерные гамильтоновы системы: неинтегрируемость и диффузия

В. В. Козлов


https://vkvideo.ru/video-222947497_456239140

Аннотация: Рассматриваются гамильтоновы системы дифференциальных уравнений, мало отличающиеся от вполне интегрируемых. Если такая система интегрируемая, то переменные действие не могут сильно изменяться и поэтому никакой диффузии нет. Таким образом, неинтегрируемое поведение гамильтоновой системы и наличие диффузии медленных переменных тесно связаны друг с другом. Этот круг вопросов обсуждается для одного класса гамильтоновых систем, на примере которых рассматривается новый механизм диффузии, отличный от “стандартного” механизма переходных цепочек. Он связан с разрушением большого числа инвариантных торов невозмущённой задачи с почти резонансным набором частот. Формальная сторона этого явления опирается на условия неограниченности интегралов условно периодических функций времени с нулевым средним значением.

Статьи по теме:


© МИАН, 2025