|
|
| ВИДЕОТЕКА |
|
Научная сессия МИАН, посвященная подведению итогов 2025 года
|
|||
|
|
|||
|
Многомерные гамильтоновы системы: неинтегрируемость и диффузия В. В. Козлов |
|||
|
Аннотация: Рассматриваются гамильтоновы системы дифференциальных уравнений, мало отличающиеся от вполне интегрируемых. Если такая система интегрируемая, то переменные действие не могут сильно изменяться и поэтому никакой диффузии нет. Таким образом, неинтегрируемое поведение гамильтоновой системы и наличие диффузии медленных переменных тесно связаны друг с другом. Этот круг вопросов обсуждается для одного класса гамильтоновых систем, на примере которых рассматривается новый механизм диффузии, отличный от “стандартного” механизма переходных цепочек. Он связан с разрушением большого числа инвариантных торов невозмущённой задачи с почти резонансным набором частот. Формальная сторона этого явления опирается на условия неограниченности интегралов условно периодических функций времени с нулевым средним значением. Статьи по теме:
|
|||