RUS  ENG
Полная версия
ВИДЕОТЕКА

Вероятностные методы в анализе и теория аппроксимации 2025
24 ноября 2025 г. 16:50, г. Санкт-Петербург, Факультет математики и компьютерных наук СПбГУ (14-ая линия В. О., 29б), ауд. 201


Analysis of photon-counting probability distributions attached to Landau levels on the Poincaré disk

Z. Mouyan

Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni-Mellal

Аннотация: To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.

Язык доклада: английский

* Zoom ID: 675-315-555, Password: mkn


© МИАН, 2025