Аннотация:
Фейнмановские интегралы являются фундаментальными объектами квантовой теории поля. Они возникают в рамках метода теории возмущений, в котором квантовополевые величины представляются в виде степенных рядов по константам связи. Для проверки современных теорий физики элементарных частиц, в значительной степени основанной на теории возмущений, необходимо вычислять фейнмановские интегралы всё в более высоких порядках теории возмущений.
При описании физических процессов, когда нужно вычислять сотни и тысячи фейнмановских интегралов, стандартным приёмом является использование некоторых алгебраических соотношений (интегрирования по частям) между фейнмановскими интегралами с целью построить алгоритм, позволяющий представить каждый интеграл в виде линейной комбинации некоторых базисных интегралов. Эта задача редукции является чисто алгебраической, и для её решения мы используем метод, основанный на построении базисов типа Грёбнера с помощью алгоритмов типа Бухбергера.
|