RUS  ENG
Полная версия
ВИДЕОТЕКА

Algebraic Structures in Integrable Systems
7 декабря 2012 г. 15:00, г. Москва, МГУ им. М.В. Ломоносова


Gaudin model and Cactus group

L. G. Rybnikov

National Research University "Higher School of Economics"

Аннотация: Cactus group is the fundamental group of the real locus of the Deligne- Mumford moduli space of stable rational curves. We define an action of this group on the set of Bethe vectors of the Gaudin magnet chain (for Lie algebra $\mathfrak{sl}(2)$) and relate this to the Berenstein-Kirillov group of piecewise linear transformations of the Gelfand-Tsetlin polytope. Some conjectures generalizing this construction will be discussed.

Язык доклада: английский


© МИАН, 2024