|
СЕМИНАРЫ |
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
|
|||
|
Обобщение теоремы Сабитова на случай многогранников произвольной размерности А. А. Гайфуллинab a Математический институт им. В. А. Стеклова РАН b Московский государственный университет им. М. В. Ломоносова, механико-математический факультет |
|||
Аннотация: Классическая формула Герона выражает площадь треугольника через длины его сторон. Если же мы возьмём многоугольник с большим числом сторон, то его площадь не может быть выражена через длины его сторон, так как он может изгибаться с сохранением длин сторон и с изменением площади. Ситуация кардинально меняется в размерности 3. В 1996 году И. Х. Сабитов доказал, что объём любого симплициального многогранника в трёхмерном евклидовом пространстве является корнем многочлена со старшим коэффициентом 1, остальные коэффициенты которого суть многочлены от квадратов длин рёбер многогранника. Следовательно, объём симплициального многогранника с данными комбинаторным строением и длинами рёбер может принимать лишь конечное число значений. Основное приложение этого результата относится к так называемой гипотезе о кузнечных мехах, которая утверждает, что объём любого изгибаемого многогранника постоянен в процессе изгибания. (Изгибаемый многогранник — многогранник с жёсткими гранями и шарнирами в рёбрах, который может изгибаться с изменением двугранных углов. Примеры таких многогранников были построены Р. Брикаром, Р. Коннелли, К. Штеффеном и др.) Из теоремы Сабитова следует, что гипотеза о кузнечных мехах верна в размерности 3. В течение долгого времени оставался открытым вопрос о том, верен ли аналог теоремы Сабитова в старших размерностях. В 2011 году докладчиком был доказан аналог теоремы Сабитова в размерности 4. Настоящий доклад посвящён недавнему результату докладчика, состоящему в том, что прямой аналог теоремы Сабитова верен для многогранников произвольной размерности Основными инструментами доказательства является теория нормирований или, в другой терминологии, теория точек (places) полей, а также сдавливания симплициальных комплексов. |