Аннотация:
Даётся доказательство теоремы Сью, анонсированной им в 1972 г.: Пусть $X$ — комплексное многообразие, $Y$ — неприводимая гиперповерхность в $X$ и $G$ — область, содержащая $X\setminus Y$ и пересекающая $Y$. Пусть $(E,h)$ — голоморфное векторное расслоение над $G$ с Накано-положительной кривизной. Тогда $E$ продолжается на все $X$ как когерентный пучок. Доказательство следует оригинальной идеe Сью и использует обобщение $L^2$-техники Хёрмандера на случай неполных многообразий, сделанное Демайи.
|