RUS  ENG
Полная версия
СЕМИНАРЫ

6 марта 2013 г. 11:30, Research Workshop of Israel Science Foundation on Orbits, Primitive Ideals and Quantum Groups, The Weitsmann institute of Science, The University of Haifa, Israel


Orbit closures

V. L. Popov

Steklov Mathematical Institute of the Russian Academy of Sciences

Аннотация: Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional algebraic $G$-module, and let $O_1$ and $O_2$ be two $G$-orbits in $V$. I shall describe a constructive way to find out whether or not $O_1$ lies in the closure of $O_2$. This yields a constructive way to find out whether given two points of $V$ lie in the same orbit or not. Several classical problems in algebra and algebraic geometry are reduced to this problem.

Язык доклада: английский

Website: https://www.wisdom.weizmann.ac.il/SpringSchool/week2.html


© МИАН, 2024