|
СЕМИНАРЫ |
Семинар отдела алгебры и отдела алгебраической геометрии (семинар И. Р. Шафаревича)
|
|||
|
Минимальные модели Конформной теории поля (KTP), минимальная лиувиллевская гравитация (МЛГ) и интегрируемые иерархии обобщенных уравнений КдВ А. А. Белавин |
|||
Аннотация: Минимальные модели (ММ) КТП это специальный класс 2-мерных КТП. Они описывают критические точки 2-мерных систем, таких как 2-мерная модель Изинга. Эти модели являются точно решаемыми. А именно корреляционные функции ММ КТП являются решениями систем диф. уравнений типа гипергеометрического уравнения и даются интегральными представлениями. Минимальные модели лиувиллевской гравитации являются специальным классом моделей Теории струн в Пространстве-Времени некритической размерности, т.е. Также они описывают 2-мерные системы, такие как 2-мерная модель Изинга, в критических точках, живущих на случайных поверхностях. Объекты, вычислением которых мы интересуемся, это так называемые корреляционные числа. Оказывается, что производящая функция этих чисел, является тау-функцией Сато для иерархии KdV или Гельфанда–Дикого со специальным начальным условием, которое задается так называемым Струнным уравнением Дугласа. Используя связь между Струнным уравнением и структурой Фробениусова многообразия, мы получаем выражение для производящей функции корреляционных чисел. При этом корреляторы МЛГ определяются как коэффициенты разложения логарифма тау функции по новым переменным, связанным с КдВ переменными специальным нелинейным «резонансным» преобразованием. Автор постарается объяснить понятия, неизвестные слушателям. |