|
ВИДЕОТЕКА |
Международная конференция "Турбулентность и волновые процессы", посвященная 100-летию со дня рождения академика М. Д. Миллионщикова
|
|||
|
Breaking phenomena in incompressible fluids as a route to the Kolmogorov and Kraichnan spectra E. A. Kuznetsovabc a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences b Novosibirsk State University c P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow |
|||
Аннотация: In this talk we demonstrate that breaking phenomena in incompressible fluids can be considered as a route to the Kolmogorov spectrum [Kolmogorov] and the Kraichnan spectrum [Kraichnan] for three- and two-dimensional developed hydrodynamic turbulence respectively. For two-dimensional turbulence we study the appearance of sharp vorticity gradients and their influence on the turbulent spectra [3,4]. We have developed the analog of the vortex line representation [5] as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as Recent numerical experiments in the framework of the Euler equations for two colliding Lamb vortex dipoles Orlandi and Co. [8] testify to favor of the collapse appearance when the vorticity becomes infinite in a finite time according to the law Acknowledgements. This work was supported by the grant of the Government of the Russian Federation (contract No. 11.G34.31.0035 dated November 25, 2010 between the Russian Ministry of Education and Sciences, NSU, and leading scientist), by the RFBR (grant No. 12-01-00943), by the program "Fundamental problems of nonlinear dynamics" of the RAS Presidium, and by the grant No. Nsh 6170.2012.2 for state support of leading scientific schools of the RF. \begin{thebibliography}{9} \bibitem{Kolmogorov} A.N. Kolmogorov, DAN USSR 30, 9 (1941). \bibitem{Kraichnan} R.H.Kraichnan, Phys. Fluids 11, 1417 (1967). \bibitem{kuzn2004} E.A. Kuznetsov, JETP Letters 80, 83-89 (2004). \bibitem{KNNR} E.A. Kuznetsov, V. Naulin, A.H. Nielsen, and J.J. Rasmussen, Phys Fluids 19, 105110-20 (2007); Theor. Comput. Fluid Dyn., 24(1-4), 253-258 (2010). \bibitem{VLR} E.A. Kuznetsov, V.P. Ruban, JETP Letters 67, 1076-1081 (1998); Phys. Rev. E 61, 831-841 (2000); E.A. Kuznetsov, JETP Letters 76, 346-350 (2002). \bibitem{Saffman} P.G. Saffman, Stud. Appl. Maths 50, 377 (1971). \bibitem{Kud} A.N. Kudryavtsev, E.A. Kuznetsov, and E.V. Sereshchenko, JETP Letters 96, 783-789 (2012). \bibitem{Orlandi} P. Orlandi, S. Pirozzoli and G. F. Carnevale, J. Fluid Mech. 690, 288-320 (2012). \bibitem{kuzn-13} E.A. Kuznetsov, Collapse and Kolmogorov spectra, Proceedings of scientific school "Nonlinear waves - 2012", Eds. A.G. Litvak and V.I. Nekorkin, Institute for Applied Physics, Nizhnii Novgorod, 26 pages (2013) (in press). \end{thebibliography} |