|
ВИДЕОТЕКА |
Международная молодежная конференция «Геометрия и управление»
|
|||
|
Polynomial Integrals of the Geodesics Equations in Two-Dimensional Case Yulia Bagderina Institute of Mathematics with Computer Center of RAS, Ufa, Russia |
|||
Аннотация: Let $$ \tag{1} ds^2=g_{11}(x,y)dx^2+2g_{12}(x,y)dxdy+g_{22}(x,y)dy^2. $$ Geodesics equations of a given metric can be treated as a system of Euler-Lagrange equations $$ \tag{2} \frac{d}{dt}L_{\dot{x}}-L_x=0,\qquad \frac{d}{dt}L_{\dot{y}}-L_y=0 $$ with the Lagrangian $$ \tag{3} L(x,y,\dot{x},\dot{y})=\frac 12g_{11}(x,y)\dot{x}^2 +g_{12}(x,y)\dot{x}\dot{y}+\frac 12g_{22}(x,y)\dot{y}^2. $$ Geodesic flow of the metric (1) is Liouville integrable, if it possesses a smooth first integral $$ \tag{4} F_1=b_0(x,y)\dot{x}+b_1(x,y)\dot{y}, $$ the second degree $$ \tag{5} F_2=b_0(x,y)\dot{x}^2+2b_1(x,y)\dot{x}\dot{y}+b_2(x,y)\dot{y}^2 $$ and the third degree $$ \tag{6} F_3=b_0(x,y)\dot{x}^3+3b_1(x,y)\dot{x}^2\dot{y}+3b_2(x,y)\dot{x}\dot{y}^2+b_3(x,y)\dot{y}^3. $$ For an integral (4), (5) or (6) the existence conditions are obtained as the compatibility conditions of an overdetermined system of linear homogeneous first-order equations in the functions $$ \tag{7} I_1(x,y)=\frac{J_1}{j_0J_0^3},\qquad I_2(x,y)=\frac{J_2}{j_0J_0^2} $$ of the equivalence transformations of the family of equations (2), (3) defined by $$ \tilde t=k(t+t_0),\qquad \tilde x=\varphi(x,y),\qquad \tilde y=\psi(x,y),\qquad k,t_0={\rm const}. $$ In (7) the value $$ j_0=g_{11}g_{22}-g_{12}^2,\qquad J_1=g_{22}J_{0x}^2-2g_{12}J_{0x}J_{0y}+g_{11}J_{0y}^2. $$ All results on the integrals (4)–(6) are obtained in assumption of the non-degeneracy of the surface $$ \tag{8} j_0\neq 0,\qquad J_0\neq 0,\qquad J_1\neq 0 $$ hold. The geometrical sense of the first two conditions (8) is obvious (non-degeneracy of the matrix $$ \tag{9} g_{22}(x,y)\left(\frac{\partial K}{\partial x}\right)^2 -2g_{12}(x,y)\frac{\partial K}{\partial x}\frac{\partial K}{\partial y} +g_{11}(x,y)\left(\frac{\partial K}{\partial y}\right)^2=0. $$ Язык доклада: английский |