|
ВИДЕОТЕКА |
Международная молодежная конференция «Геометрия и управление»
|
|||
|
The Laplace–Beltrami Operator on Conic and Anti-conic Surfaces Dario Prandi LSIS, Université de Toulon, France |
|||
Аннотация: We consider the evolution of a free particle on a two-dimensional manifold endowed with the degenerate Riemannian metric In particular, we discuss whether a free particle or the heat can cross the singular set In the last part of the talk we will present some recent results regarding the spectrum of the Laplace–Beltrami operator associated with these metrics and the Aharonov-Bohm effect in the Grushin case. This is a joint work with U. Boscain and M. Seri. Язык доклада: английский |