RUS  ENG
Полная версия
СЕМИНАРЫ

16 сентября 2014 г. 09:00, International conference "Geometric Complexity Theory", September 15-20, 2014, Simons Institute for Theoretical Computing, Berkeley, University of California, USA


Orbit closures

V. L. Popov

Steklov Mathematical Institute of Russian Academy of Sciences


http://www.youtube.com/watch?v=GFw6Bhg_tyA

Аннотация: Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional algebraic $G$-module, and let $O_1$ and $O_2$ be two $G$-orbits in $V$. The talk is aimed at a discussion of the constructive ways of finding out whether or not $O_1$ lies in the Zariski closure of $O_2$. This yields the constructive ways of finding out whether given two points of V lie in the same orbit or not. Several classical problems in algebra and algebraic geometry are reduced to this problem.

Язык доклада: английский

Website: https://simons.berkeley.edu/talks/vladimir-popov-2014-09-16


© МИАН, 2024