|
СЕМИНАРЫ |
Заседания Московского математического общества
|
|||
|
Конформные блоки и билинейные соотношения М. А. Берштейн |
|||
Аннотация: Конформный блок — это некоторая функция, имеющая формальное определение в терминах теории представлений алгебры симметрий конформной теории поля. Я буду говорить только про базисный пример, в котором алгебра симметрий — это алгебра Вирасоро. Для специальных значений параметров такой конформный блок совпадает с гипергеометрической функцией, для других значений он выражается через эллиптические функции, но, вообще говоря, это просто некая специальная функция, зависящая от шести параметров. В последние пять лет были предложены два новых утверждения о конформных блоках. Во-первых, оказалось, что конформный блок равен некрасовской статсумме — производящей функции интегралов по многообразиям модулей пучков на Оба этих утверждения можно доказывать при помощи билинейных соотношений на конформные блоки. Эти билинейные соотношения совпадут соответственно с уравнениями раздутия на Некрасовскую статсумму и билинейными уравнениями Хироты на тау функцию Пенлеве. О том, как соответствующие билинейные соотношения возникают в конформной теории, я буду рассказывать. Доклад основан на двух совместных работах: одна с Б.Фейгиным и А.Литвиновым, другая с А.Щечкиным. |