|
СЕМИНАРЫ |
Заседания Московского математического общества
|
|||
|
Глобальная теория бифуркаций на плоскости Ю. С. Ильяшенко |
|||
Аннотация: Этот доклад знаменует собой начало нового раздела теории бифуркаций: глобальной теории бифуркаций на плоскости. Плоская теория бифуркаций делится на три части: локальные, полулокальные и глобальные бифуркации. Пять лет назад стало ясно, что третью часть еще только предстоит создать. Локальная теория бифуркаций (в докладе мы будем говорить только о плоскости) связана с перестойками фазовых портретов диференциальных уравнений вблизи особых точек. Эта теория почти закончена, хотя недавно в ней обнаружились новые открытые проблемы. Нелокальная теория связана с бифуркациями сепаратрисных многоугольников (полициклов). Недавно в этой теории были получены новые неожиданные результаты, о которых будет расскаазано в докладе. Новые эффекты в глобальной теории возникают из-за появления так называемых мелькающих сепаратрисных связок. Цель доклада — наметить контуры новой теории и сформулироать многочисленные открытые проблемы. Основные новые результаты:
Тридцать пять лет назад Арнольд сформулировал шесть гипотез, призванных обрисовать будущее развитие глобальной теории бифуркаций на плоскости. Сейчас все шесть гипотез опровергнуты, но они предопределили современное развитие теории. |