RUS  ENG
Полная версия
СЕМИНАРЫ

Заседания Московского математического общества
12 мая 2020 г., г. Москва, Доклад будет проходить в режиме онлайн-конференции на платформе zoom. Для участия обращаться к И.А.Дынникову dynnikov@mech.math.msu.su


Глобальная теория бифуркаций на плоскости

Ю. С. Ильяшенко

Аннотация: Этот доклад знаменует собой начало нового раздела теории бифуркаций: глобальной теории бифуркаций на плоскости. Плоская теория бифуркаций делится на три части: локальные, полулокальные и глобальные бифуркации. Пять лет назад стало ясно, что третью часть еще только предстоит создать.
Локальная теория бифуркаций (в докладе мы будем говорить только о плоскости) связана с перестойками фазовых портретов диференциальных уравнений вблизи особых точек. Эта теория почти закончена, хотя недавно в ней обнаружились новые открытые проблемы. Нелокальная теория связана с бифуркациями сепаратрисных многоугольников (полициклов). Недавно в этой теории были получены новые неожиданные результаты, о которых будет расскаазано в докладе.
Новые эффекты в глобальной теории возникают из-за появления так называемых мелькающих сепаратрисных связок. Цель доклада — наметить контуры новой теории и сформулироать многочисленные открытые проблемы. Основные новые результаты:
  • Cуществование открытого множества структурно неустойчивых семейств векторных полей на плоскости, а также семейств, имеющих функциональный инвариант (совместный результат с Кудуряшовым и Щуровым)
  • Полная классификация глобальных бифуркаций в типичных однопараметрических семействах векторных полей на сфере (совместно с Гончарук, Солодовниковым и Старичковой)
  • Описание больших носителей бифуркаций (множеств, в окрестности которых бифуркация реально происходит) для семейств с любым числом параметров (совместно с Гончарук)
  • Построение структурно неустойчивых семейств в полулокалной теории бифуркаций (совместно с Дуковым)
  • Новые инварианты топологической классификации многопарметрических семейств векторных полей на сфере (Гончарук и Кудряшов).

Тридцать пять лет назад Арнольд сформулировал шесть гипотез, призванных обрисовать будущее развитие глобальной теории бифуркаций на плоскости. Сейчас все шесть гипотез опровергнуты, но они предопределили современное развитие теории.


© МИАН, 2024