Аннотация:
$k$-й каустикой некоторой точки риманова многообразия называется объединение $k$-х сопряженных точек на всех геодезических, выходящих из этой точки. Теорема Арнольда (обобщающая наблюдение Якоби и использующая аналитический результат С. Л. Табачникова) утверждает, что для любого $k$ такая каустика на типичной поверхности, достаточно близкой к стандартной сфере, имеет не
менее 4 полукубических ребер возврата. Я расскажу о топологическом доказательстве этого факта, основанном на теории Морса и, по-видимому, значительно ослабляющем условия “близости к сфере”.
|