Аннотация:
В 1985 году Б. С. Цирельсон установил глубокую связь между гауссовскими процессами и важными геометрическими характеристиками выпуклого компакта в бесконечномерном сепарабельном гильбертовом пространстве – внутренними объемами.
Ф. Гётце, З. Каблучко и Д. Н. Запорожец в своей недавней работе 2021 года представили коническую версию теоремы Цирельсона для аналогов внутренних объемов – углов Грассмана конечномерных конусов, а также доказали теорему о связи углов Грассмана конической оболочки множества с вероятностью поглощения нуля выпуклой оболочкой его гауссовского образа.
В данном докладе мы обсудим обобщение этих результатов на случай бесконечномерных конусов в сепарабельном гильбертовом пространстве.
|