|
СЕМИНАРЫ |
Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
|
|||
|
О геометрической формулировке Стандартной Модели В. Г. Кадышевский Объединенный институт ядерных исследований, г. Дубна Московской обл. |
|||
Аннотация: Согласно А. Эйнштейну, $$ Опыт = Геометрия + Физика. $$ Этот тезис нашел убедительное подтверждение в таких фундаментальных разделах современной физики, как специальная теория относительности (СТО), общая теория относительности (ОТО) и квантовая теория. Универсальные константы $$ ds^2=c^2dt^2-(dx_1)^2-(dx_2)^2-(dx_3)^2. $$ Соответствующее релятивистское 3-пространство скоростей обладает геометрией Лобачевского, кривизна которого равна Геометрическая интерпретация ОТО и, в этой связи, ньютоновой постоянной В квантовой теории такие наблюдаемые физические величины, как импульс, энергия, угловой момент, являются генераторами преобразований симметрии пространства-времени, образуя алгебру Ли. Постоянная Планка В современной теории элементарных частиц, называемой Стандартной Моделью (СМ), массы кварков, лептонов и векторных бозонов возникают в результате взаимодействия соответствующих полей со скалярным полем Хиггса В настоящем докладе рассматривается обобщение СМ, в рамках которого “механизм Хиггса” и некоторые другие характерные особенности модели получают геометрическую интерпретацию. |