![]() |
|
SEMINARS |
Seminar by Department of Discrete Mathematic, Steklov Mathematical Institute of RAS
|
|||
|
Limit of Brownian trees with exponential weight on its height Hui He School of Mathematical Sciences, Beijing Normal University |
|||
Abstract: We consider a Brownian continuum random tree $$ \frac{{\mathbb N}\left[ {\rm e}^{-\mu H(\tau)}(\tau, Z)\in \cdot\bigg{|}\int_0^{\infty}Z_s{\rm d}s=r\right]} {{\mathbb N}\left[ {\rm e}^{-\mu H(\tau)}\bigg{|}\int_0^{\infty}Z_s{\rm d}s=r\right] } \overset{d}{\longrightarrow} \text{Law}\left[ (\tau^{\mu}, Z^{\mu})\right],\quad \text{in a local sense,} $$ where if Language: English |