![]() |
|
SEMINARS |
Seminar on Analysis, Differential Equations and Mathematical Physics
|
|||
|
On a homothety conjecture for convex bodies of flotation: counterexample D. Ryabogin Kent State University |
|||
Abstract: Let $$ W^+(\theta,t)=\{x:\,\langle x, e(\theta)\rangle\ge t\}\quad\textrm{and}\quad W^-(\theta,t)=\{x:\,\langle x, e(\theta)\rangle\le t\}. $$ If $$ \textrm{vol}_2(W^+(\theta, t(\theta))\cap K)={\mathcal D}\,\textrm{vol}_2(K). $$ The corresponding convex body of flotation $$ K^{\mathcal D}=\bigcap\limits_{ \theta\in {\mathbb R} }W^-(\theta,t(\theta)). $$ We investigate the homothety conjecture for convex bodies of flotation of planar domains. We show that there is a density close to Language: English Website: https://msrn.tilda.ws/sl |