|
|
| SEMINARS |
|
Seminar on Analysis, Differential Equations and Mathematical Physics
|
|||
|
|
|||
|
The GLT theory: perspectives and beyond S. Serra-Capizzano University of Insubria |
|||
|
Abstract: The idea of Generalized Locally Toeplitz (GLT) sequences has been introduced [94, 95] as a generalization both of classical Toeplitz sequences and of variable coefficient differential operators and, for every sequence of the class, it has been demonstrated that it is possible to give a rigorous description of the asymptotic spectrum [27, 102] in terms of a function (the symbol) that can be easily identified, via specific topological notions [101, 92] (see also [12, 14, 52, 4] and references therein). It goes back to the seminal paper by Tilli [101], where the most important tools were also established, while related concepts were anticipated in [88]. This generalizes the notion of a symbol for differential operators (discrete and continuous) or for Toeplitz sequences, where for the latter it is identified through the Fourier coefficients and is related to the classical Fourier Analysis (see [29]). For every The seminal papers on the considered spectral theory are [29, 102, 101, 94, 95]. The GLT theory is organized in books and revue papers [52, 53, 54, 15, 16, 17]. The other references contain applications and theoretical results, where either the GLT machinery has been used, or new related techniques are introduced for the asymptotic eigenvalue analysis in a non-Hermitian/non-normal setting [6, 18, 25, 39, 44, 61, 62, 80, 83, 84]. References [1] A. Adriani, D. Bianchi, S. Serra-Capizzano. Asymptotic spectra of large (grid) graphs with a uniform local structure (Part I): Theory. Milan J. Math. 88 (2020), no. 2, 409–454. [2] A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano. Asymptotic spectra of large (grid) graphs with a uniform local structure, Part II: Numerical applications. J. Comput. Appl. Math. 437 (2024), Paper No. 115461. [3] A. Adriani, A.J.A. Schiavoni-Piazza, S. Serra-Capizzano. Blocking structures, g.a.c.s. approximation, and distributions. Bol. Soc. Mat. Mex. (3) 31-2 (2025), Paper No. 41. [4] A. Adriani, A.J.A. Schiavoni-Piazza, S. Serra-Capizzano, C. Tablino-Possio. Revisiting the notion of approximating class of sequences for handling approximated PDEs on moving or unbounded domains. Electron. Trans. Numer. Anal. (2025), to appear. [5] F. Ahmad, E.S. Al-Aidarous, D. Abdullah Alrehaili, S.-E. Ekstrom, I. Furci, S. Serra-Capizzano. Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Numer. Alg. 78-3 (2018), 867-893. [6] A.S. Al-Fhaid, S. Serra-Capizzano, D. Sesana, M.Z. Ullah. Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators. Numer. Linear Algebra Appl. 21-6 (2014), 722-743. [7] G.W. Anderson, A. Guionnet, O. Zeitouni. An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. [8] A. Arico, M. Donatelli, S. Serra-Capizzano. V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26 (2004), 186-214. [9] J. Banas, M. Mursaleen. Sequence spaces and measures of noncompactness with applications to differential and integral equations. Springer, New Delhi, 2014. [10] N. Barakitis, M. Donatelli, S. Ferri, V. Loi, S. Serra-Capizzano, R. Sormani. Block structures, approximation, and preconditioning. Numer. Alg. (2025), to appear. In collaborazione con [11] N. Barakitis, P. Ferrari, I. Furci, S. Serra-Capizzano. An extradimensional approach for distributional results: the case of 2 × 2 block Toeplitz structures. Springer Proc. Math. Stat. on Mathematical Modeling with Modern Applications (2025), https://link.springer.com/book/9783031890406#overview. [12] G. Barbarino. Equivalence between GLT sequences and measurable functions. Linear Algebra Appl. 529 (2017), 397–412. [13] G. Barbarino. A systematic approach to reduced GLT. BIT 62-3 (2022), 681-743. [14] G. Barbarino, C. Garoni. From convergence in measure to convergence of matrixsequences through concave functions and singular values. Electron. J. Linear Algebra 32 (2017), 500–513. [15] G. Barbarino, C. Garoni, M. Mazza, S. Serra-Capizzano. Rectangular GLT sequences. Electron. Trans. Numer. Anal. 55 (2022), 585-617. [16] G. Barbarino, C. Garoni, S. Serra-Capizzano. Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case. Electron. Trans. Numer. Anal. 53 (2020), 28-112. [17] G. Barbarino, C. Garoni, S. Serra-Capizzano. Block generalized locally Toeplitz sequences: theory and applications in the multidimensional case. Electron. Trans. Numer. Anal. 53 (2020), 113-216. [18] G. Barbarino, S. Serra-Capizzano. Non-Hermitian perturbations of Hermitian matrixsequences and applications to the spectral analysis of the numerical approximation of partial differential equations. Numer. Linear Algebra Appl. 27-3 (2020), e2286, 31 pp. [19] B. Beckermann, S. Serra-Capizzano. On the asymptotic spectrum of Finite Element matrix sequences. SIAM J. Numer. Anal. 45 (2007), 746-769. [20] P. Benedusi, P. Ferrari, C. Garoni, R. Krause, S. Serra-Capizzano. Fast parallel solver for the space-time IgA-DG discretization of the diffusion equation. J. Sci. Comput. 89-1 (2021), Paper No. 20, 21 pp. [21] P. Benedusi, P. Ferrari, E. Rognes, S. Serra-Capizzano. Modeling excitable cells with the EMI equations: spectral analysis and fast solution strategy. J. Sci. Comput. 98-3 (2024), Paper No. 58, 23 pp. [22] P. Benedusi, C. Garoni, R. Krause, X. Li, S. Serra-Capizzano. Space-time FE-DG discretization of the anisotropic diffusion equation in any dimension: the spectral symbol. SIAM J. Matrix Anal. Appl. 39-3 (2018), 1383-1420. [23] D. Bianchi. Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo 58-3 (2021), Paper No. 38, 47 pp. [24] D. Bianchi, S. Serra-Capizzano. Spectral analysis of finite-dimensional approximations of 1d waves in non-uniform grids. Calcolo 55-4 (2018), Paper No. 47, 28 pp. [25] M. Bogoya, S. Grudsky, S. Serra-Capizzano. Fast non-Hermitian Toeplitz eigenvalue computations, joining matrixless algorithms and FDE approximation matrices. SIAM J. Matrix Anal. Appl. 45-1 (2024), 284-305. [26] M. Bogoya, S. Grudsky, S. Serra-Capizzano. Fast non-Hermitian Toeplitz eigenvalue computations, joining matrixless algorithms and FDE approximation matrices. Linear Algebra Appl. 697 (2024), 487-527. [27] A. B¨ottcher, B. Silbermann. Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York (1999). [28] M. Bronstein, V. Ivrii. Sharp spectral asymptotics for operators with irregular coefficients. Pushing the limits, Comm. Partial Differential Equations, 28-1/2 (2003), 83-102. [29] T.F. Chan, H.C. Elman. Fourier analysis of iterative methods for elliptic problems. SIAM Rev. 31-1 (1989), 20-49. [30] F. Di Benedetto, S. Serra-Capizzano. A unifying approach to abstract matrix algebra preconditioning. Numer. Math. 82-1 (1999), 57-90. [31] F. Di Benedetto, S. Serra-Capizzano. Optimal multilevel matrix algebra operators. Linear Multilin. Algebra 48-1 (2000), 35-66. [32] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems. Comput. Methods Appl. Mech. Engrg. 284 (2015), 230-264. [33] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers. Robust and optimal multi-iterative techniques for IgA collocation linear systems. Comput. Methods Appl. Mech. Engrg. 284 (2015), 1120-1146. [34] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers. Spectral analysis and spectral symbol of matrices in isogeometric collocation methods. Math. Comp. 85-300 (2016), 1639-1680 [35] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers. Symbol-based construction and analysis of optimal/robust multigrid methods for B-splines Isogeometric Analysis. SIAM J. Numer. Anal. 55-1 (2017), 31-62. [36] M. Donatelli, M. Mazza, S. Serra-Capizzano. Spectral analysis and preconditioning for variable coefficient fractional derivative operators. J. Comput. Phys. 307 (2016), 262-279. [37] M. Donatelli, M. Mazza, S. Serra-Capizzano. Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations. SIAM J. Sci. Comput. 40-6 (2018), A4007-A4039. [38] A. Dorostkar, M. Neytcheva, S. Serra-Capizzano. Spectral analysis of coupled PDEs and of their Schur complements via the notion of Generalized Locally Toeplitz sequences. Comput. Methods Appl. Mech. Engrg. 309 (2016), 74-105. [39] I. Dravins, S. Serra-Capizzano, M. Neytcheva. Spectral analysis of preconditioned matrices arising from stage-parallel implicit Runge-Kutta methods of arbitrarily high order. SIAM J. Matrix Anal. Appl. 45-2 (2024), 1007-1034. [40] M. Dumbser, F. Fambri, I. Furci, M. Mazza, S. Serra-Capizzano, M. Tavelli. Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations: spectral analysis and computational results. Numer. Linear Algebra Appl. 25-5 (2018), e2151, 31 pp. [41] S.-E. Ekstrom, I. Furci, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers. Are the eigenvalues of the B-spline isogeometric analysis approximation of −Δu = λu known in almost closed form? Numer. Linear Algebra Appl. 25-5 (2018), e2198, 34 pp. [42] S.-E. Ekstrom, C. Garoni, S. Serra-Capizzano. Are the eigenvalues of banded symmetric Toeplitz matrices known in close form? Exp. Math. 4 (2018), 478-487. [43] H. Fast. Sur la convergence statistique. Colloq. Math, 2 (1951), 241–244. [44] P. Ferrari, I. Furci, S. Hon, M. Mursaleen, S. Serra-Capizzano. The eigenvalue distribution of special 2-by-2 block matrix-sequences with applications to the case of symmetrized Toeplitz structures. SIAM J. Matrix Anal. Appl. 40-3 (2019), 1066-1086. [45] P. Ferrari, I. Furci, S. Serra-Capizzano. Flipped structured matrix-sequences in image deblurring with reflective and anti-reflective boundary conditions. Numer. Alg. (2025), https://doi.org/10.1007/s11075-024-01960-3. [46] J. Fleckinger-Pelle. The vibrations of a drum with fractal boundary. In Mathematics and the 21st century (Cairo, 2000), 305-322, World Sci. Publishing, River Edge, NJ, 2001. 4 [47] J. Fleckinger, G. Metivier. Theorie spectrale des operateurs uniformement elliptiques sur quelques ouverts irreguliers. C.R. Acad. Sci. Paris Ser. A 276 (1973), 913-916. [48] I. Furci, A. Adriani, S. Serra-Capizzano. Block structured matrix-sequences and their spectral and singular value canonical distributions: a general theory. arXiv (2025), arXiv:2501.14874. [49] C. Garoni, C. Manni, F. Pelosi, S. Serra-Capizzano, H. Speleers. On the spectrum of stiffness matrices arising from isogeometric analysis. Numer. Math. 127 (2014), 751-799. [50] C. Garoni, C.Manni, S. Serra-Capizzano, D. Sesana, H. Speleers. Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods. Math. Comp. 86-305 (2017), 1343-1373. [51] C. Garoni, C.Manni, S. Serra-Capizzano, D. Sesana, H. Speleers. Lusin theorem, GLT sequences and matrix computations: an application to the spectral analysis of PDE discretization matrices. J. Math. Anal. Appl. 446-1 (2017), 365-382. [52] C. Garoni, S. Serra-Capizzano. The theory of Generalized Locally Toeplitz sequences: theory and applications - Vol I. SPRINGER - Springer Monographs in Mathematics, Berlin, (2017). [53] C. Garoni, S. Serra-Capizzano. The theory of Generalized Locally Toeplitz sequences: theory and applications - Vol II. SPRINGER - Springer Monographs in Mathematics, Berlin, (2018). [54] C. Garoni, S. Serra-Capizzano. Generalized Locally Toeplitz Sequences: A Spectral Analysis Tool for Discretized Differential Equations. SPRINGER - Lecture Notes in Mathematics, CIME Foundation Subseries 2219 (2018), 161-236. [55] C. Garoni, S. Serra-Capizzano, D. Sesana. Spectral Analysis and Spectral Symbol of d-variate Qp Lagrangian FEM Stiffness Matrices. SIAM J. Matrix Anal. Appl. 36-3 (2015), 1100-1128 [56] C. Garoni, H. Speleers, S.-E. Ekstrom, A. Reali, S. Serra-Capizzano, T.J.R. Hughes. Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review. Arch. Comput. Methods Eng. 26-5 (2019), 1639-1690. [57] P. Gilkey. Asymptotic formulae in spectral geometry. Studies in Advanced Mathematics, Chapman and Hall/CRC, Boca Raton, FL, 2004. [58] C. Gordon, D. Webb, S. Wolpert. Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math., 110-1 (1992), 1-22. [59] G. Grubb. Functional calculus of pseudodifferential boundary problems. Progress in Mathematics, Birkhauser, Basel, 1996. [60] S. Holmgren, S. Serra-Capizzano, P. Sundqvist. Can one hear the composition of a drum? Mediterr. J. Math., 3-2 (2006), 227-249. [61] S. Hon, S. Serra-Capizzano. Block Toeplitz preconditioners for all-at-once systems from linear wave equations. Electr. Trans. Numer. Anal. 58 (2023), 177-195. 5 [62] S. Hon, J. Dong, S. Serra-Capizzano. A preconditioned MINRES method for optimal control of wave equations and its related asymptotic spectral distribution theory. SIAM J. Matrix Anal. Appl. 44-4 (2023), 1477-1509. [63] M. Kac. Can one hear the shape of a drum? Amer. Math. Monthly, 73-4 (1966), 1-23. [64] K. Kumar, M.N.N. Namboodiri, S. Serra-Capizzano. Perturbation of operators and approximation of spectrum. Proc. Indian Acad. Sci. Math. Sci. 124-2 (2014), 205–224. [65] K. Kumar, M.N.N. Namboodiri, S. Serra-Capizzano. Preconditioners and Korovkin type theorems for infinite-dimensional bounded linear operators via completely positive maps. Studia Math. 218-2 (2013), 95–118. [66] A.B.J. Kuijlaars, S. Serra-Capizzano. Asymptotic zero distribution of orthogonal polynomials with discontinuously varying recurrence coefficients. J. Approx. Theory. 113 (2001), 142-155. [67] N. Lamsahel, A.E. Akri, A. Ratnani. Eigenvalues Distributions and Control Theory. arXiv (2024), arXiv:2401.01975. [68] N. Lamsahel, C. Manni, A. Ratnani, S. Serra-Capizzano, H. Speleers. Outlier-free isogeometric discretizations for Laplace eigenvalue problems: closed-form eigenvalue and eigenvector expressions., Numer. Math. (2025), to appear. [69] X.-L. Lin, M.K. Ng, J. Pan. Hermitian Quaternion Toeplitz Matrices by Quaternionvalued Generating Functions. arXiv (2025), arXiv.2504.15073. [70] A. Marica, E. Zuazua. Propagation of 1D waves in regular discrete heterogeneous media: a Wigner measure approach. Found. Comput. Math. 15-6 (2015), 1571-1636. [71] M. Mazza, C. Manni, A. Ratnani, S. Serra-Capizzano, H. Speleers. Isogeometric analysis for 2D and 3D curl-div problems: spectral symbols and fast iterative solvers. Comput. Methods Appl. Mech. Engrg. 344 (2019), 970-997. [72] M. Mazza, J. Pestana. Spectral properties of flipped Toeplitz matrices and related preconditioning. BIT 59-2 (2019), 463-482. [73] M. Mazza, J. Pestana. The asymptotic spectrum of flipped multilevel Toeplitz matrices and of certain preconditionings. SIAM J. Matrix Anal. Appl. 42-3 (2021), 1319-1336. [74] M. Mazza, A. Ratnani, S. Serra-Capizzano. Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions. Math. Comp. 88-317 (2019), 1155-1188. [75] M. Mazza, M. Semplice, S. Serra-Capizzano, E. Travaglia. A matrix-theoretic spectral analysis of incompressible Navier-Stokes staggered DG approximations and a related spectrally based preconditioning approach. Numer. Math. 149-4 (2021), 933-971. [76] M. Mazza, S. Serra-Capizzano, M. Usman. Symbol-based preconditioning for Riesz distributed-order space-fractional diffusion equations. Electron. Trans. Numer. Anal. 54 (2021), 499-513. [77] M.A. Mursaleen, S. Serra-Capizzano. Statistical convergence via q-calculus and a Korovkin’s type approximation theorem. Axioms, 11-2 (2022), paper 70. [78] M. Mursaleen, O.H.H. Edely. Statistical convergence of double sequences. J. Math. Anal. Appl., 288 (2003), 223–231. 6 [79] M. Mursaleen, S.A. Mohiuddine. On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math., 233-2 (2009), 142–149. [80] E. Ngondiep, S. Serra-Capizzano, D. Sesana. Spectral features and asymptotic properties for g-circulants and g-Toeplitz sequences. SIAM J. Matrix Anal. Appl. 31-4 (2009/10), 1663-1687. [81] J. Pestana, A. Wathen. A preconditioned MINRES method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36-1 (2015), 273-288. [82] N.S. Sarathkumar, S. Serra-Capizzano. GLT sequences and automatic computation of the symbol. (English summary) Linear Algebra Appl. 697 (2024), 468–486. [83] A.J.A. Schiavoni-Piazza, D. Meadon, S. Serra-Capizzano. The β maps: Strong clustering and distribution results on the complex unit circle. Linear Algebra Appl. 697 (2024), 365-383. [84] A.J.A. Schiavoni-Piazza, S. Serra-Capizzano. Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra. Electron. Trans. Numer. Anal. 59 (2023), 1-8. [85] R. Seeley. Complex powers of an elliptic operator. In Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), 288-307, AMS, Providence, RI. [86] S. Serra-Capizzano. Multi-iterative methods. Comput. Math. Appl. 26-4 (1993), 65-87. [87] S. Serra-Capizzano. Preconditioning strategies for Hermitian Toeplitz systems with nondefinite generating functions. SIAM J. Matrix Anal. Appl. 17-4 (1996), 1007-1019. [88] S. Serra-Capizzano. The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems. Numer. Math. 81-3 81 (1999), 461-495. [89] S. Serra-Capizzano. A Korovkin-type theory for finite Toeplitz operators via matrix algebras. Numer. Math. 82-1 (1999), 117-142. [90] S. Serra-Capizzano. A Korovkin-based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces. SIAM J. Numer. Anal. 36-6 (1999), 1831–1857. [91] S. Serra-Capizzano. Spectral and computational analysis of block Toeplitz matrices having nonnegative definite matrix-valued generating functions. BIT 39-1 (1999), 152-175. [92] S. Serra-Capizzano. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach. Linear Algebra Appl. 328-1/3 (2001), 121-130. [93] S. Serra-Capizzano. Spectral behavior of matrix sequences and discretized boundary value problems. Linear Algebra Appl. 337 (2001), 37-78. [94] S. Serra-Capizzano. Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations. Linear Algebra Appl. 366 (2003), 371-402. [95] S. Serra-Capizzano. The GLT class as a generalized Fourier Analysis and applications. Linear Algebra Appl. 419 (2006), 180-233. [96] S. Serra-Capizzano, P. Tilli. Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices. J. Comput. Appl. Math. 108-1/2 (1999), 113-130. 7 [97] S. Serra-Capizzano, P. Tilli. On unitarily invariant norms of matrix-valued linear positive operators. J. Inequal. Appl. 7-3 (2002), 309-330. [98] S. Serra-Capizzano, E.E. Tyrtyshnikov. How to prove that a preconditioner cannot be superlinear. Math. Comp. 72-243 (2003), 1305-1316. [99] T. Tao, V. Vu. Random matrices: the circular law. Commun. Contemp. Math. 10-2 (2008), 261-307. [100] P. Tilli. A note on the spectral distribution of Toeplitz matrices. Linear and Multilinear Algebra 45-2/3 (1998), 147-159. [101] P. Tilli. Locally Toeplitz sequences: spectral properties and applications. Linear Algebra Appl. 278 (1998), 91-120. [102] E.E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra Appl. 232 (1996), 1-43. [103] E.E. Tyrtyshnikov. Extra dimension approach to Spectral Distributions. Private discussion (1997). [104] N.L. Zamarashkin, E.E. Tyrtyshnikov. Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function. Mat. Sb. 188-8 (1997), 83–92; English translation in Sb. Mat. 188-8 (1997), 1191-1201. Language: English Website: https://msrn.tilda.ws/sl |
|||