|
СЕМИНАРЫ |
|
О выпуклой оболочке многомерного случайного блуждания Д. Н. Запорожец Санкт-Петербургское отделение Математического института им. В. А. Стеклова АН СССР |
|||
Аннотация: Хорошо известен классический результат о том, что для одномерного случайного блуждания с непрерывной и симметричной функцией распределения вероятность оставаться положительным за n шагов не зависит от распределения блуждания. В докладе мы обсудим, как данное утверждение можно обобщить на двумерный случай, и предложим гипотезу для многомерного случая. Кроме того, в многомерном случае будет получена формула для среднего числа граней выпуклой оболочки случайного блуждания, которое, как оказалось, тоже не зависит от распределения блуждания, причем без предположения о симметричности. Также в этом общем случае будет дана формула для средней площади поверхности выпуклой оболочки случайного блуждания. Доклад основан на совместной работе с В. Высоцким |