RUS  ENG
Полная версия
СЕМИНАРЫ

Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
6 марта 2018 г. 16:00, комн. 307 ИППИ РАН (Большой Каретный пер., 19), Москва


Hydrodynamic limit for a disordered harmonic chain

Cedric Bernardin

Uni Nice

Аннотация: Consider a one-dimensional unpinned chain of harmonic oscillators with random masses. We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium. This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity. Joint with F. Huveneers and S. Olla.


© МИАН, 2025