Аннотация:
Рассматривается задача нахождения точной асимптотики вероятностей высоких выбросов траекторий процессов гауссовского хаоса, то есть однородной функции положительного порядка от гауссовского стационарного векторного процесса с зависимыми и неодинаково распределёнными компонентами, ковариационная матрица которого в окрестности нуля удовлетворяет условию типа Пикандса. В первой главе диссертации найдена точная асимптотика исследуемой вероятности для случая произведения двух гауссовских стационарных процессов. Вторая глава диссертации посвящена рассмотрению случая квадратичной формы от гауссовского стационарного векторного процесса. При этом предполагается только, что максимальное собственное значение матрицы квадратичной формы имеет кратность $1$. В третьей главе диссертации рассматривается общий случай задачи, обобщающий рассмотренные выше частные случаи. Предполагается, что однородная функция дважды непрерывно дифференцируема в некоторой окрестности множества её точек максимума на единичной сфере. Оказывается, что асимптотическое поведение искомой вероятности определяется значением данного максимума, а также структурой множества точек максимума однородной функции на единичной сфере.
|