Аннотация:
Изучена эволюция во времени плоской картины малых возмущений, налагаемых на радиальное растекание либо сток кольца из несжимаемого идеально жесткопластического материала, подчиняющегося критерию пластичности Мизеса–Генки. На расширяющихся (сужающихся) границах кольца и в основном процессе, и в возмущенном приняты условия прилипания. С помощью метода интегральных соотношений, базирующегося на вариационных неравенствах в соответствующем комплекснозначном гильбертовом пространстве, линеаризованная задача в возмущениях сведена к одному соотношению для квадратичных функционалов, из которого выведены новые верхние экспоненциальные оценки роста либо затухания кинематических возмущений. Показано, что угловые гармоники с разными номерами эволюционируют качественно неодинаково.
|