Аннотация:
Скобка Пуассона квадратичных форм является квадратичной формой. Это позволяет переформулировать теоремы алгебры бинарных форм в виде фактов геометрии Лобачевского и релятивистского мира де Ситтера. Из этой интерпретации вытекает, что три высоты треугольника плоскости Лобачевского пересекаются в одной точке, лежащей на плоскости Лобачевского, если все углы треугольника меньше 120 градусов. При бо́льшем угле точка пересечения может попасть в релятивистскую плоскость де Ситтера, реализуемую в модели Клейна листом Мёбиуса, дополняющим на проективной плоскости круг, реализующий плоскость Лобачевского.
|