Аннотация:
В докладе будет рассказано об открытом Бургейном явлении усиленной сходимости аппроксимативных единиц (а.е.). В частном случае пуассоновской а.е. это явление состоит в том, что любая функция $u$, гармоническая и положительная в верхней полуплоскости, имеет конечную вариацию на многих вертикальных отрезках с концом на вещественной оси. Докладчики обобщили этот результат на функции, гармонические и положительные в любой приличной $d$-мерной области при любом $d=2,3,\dots$ . Для этого потребовалось найти новое доказательство теоремы Бургейна, (его доказательство использовало гармонический анализ). Будет рассказано и о некоторых других вопросах, связанных с усиленной сходимостью а.е.
|