|
СЕМИНАРЫ |
Семинар международной лаборатории алгебраической топологии и ее приложений (АТиП)
|
|||
|
Теорема о покрытии шапочек А. А. Полянский |
|||
Аннотация: Шапочкой радиуса \alpha на единичной сфере S называется множество точек, которые находятся на сферическом расстоянии не более \alpha от некоторой фиксированной точки сферы. Набор K шапочек называется неразделимым, если не существует гиперплоскости, проходящей через центр сферы, которая не пересекала бы ни одну из шапочек и при этом разделяла бы множество шапочек на два непустых множества. Мы доказали, что если дан неразделимый набор шапочек с суммой радиусов равной \beta < π/2, то этот набор можно покрыть одной шапочкой радиуса \beta. Это утверждение является сферическим аналогом так называемой теоремы Гудмана-Гудмана о покрытии кругов кругом, а также усилением гипотезы Фейеш Тота, доказанной докладчиком в совместной работе с Цзяном. |