RUS  ENG
Полная версия
СЕМИНАРЫ

Семинар отдела алгебры и отдела алгебраической геометрии (семинар И. Р. Шафаревича)
1 ноября 2022 г. 15:00, г. Москва, МИАН, комн. 104 (ул. Губкина, 8) + Zoom


Формальный коцикл Ботта и детерминантное центральное расширение

Д. В. Осипов



Аннотация: Коцикл Ботта (или, по-другому, коцикл Ботта-Терстона) - это 2-коцикл на группе сохраняющих ориентацию диффеоморфизмов окружности со значениями в вещественных числах. На уровне алгебр Ли он кратен коциклу Гельфанда-Фукса и определяет центральное расширение алгебры Ли векторных полей на окружности, называемое алгеброй Вирасоро. Я расскажу про формальный аналог коцикла Ботта-Терстона, который есть 2-коцикл на группе непрерывных автоморфизмов алгебры рядов Лорана $A((t))$ (где $A$ - произвольное коммутативное кольцо) со значениями в группе обратимых элементов кольца $A$. Я расскажу также про вычисление (с точностью до 2-кограницы) формального коцикла Ботта-Тёрстона через другой 2-коцикл, определяющий детерминантное центральное расширение группы непрерывных автоморфизмов алгебры $A((t))$, строящееся через относительные детерминанты $A$-подмодулей в $A$-модуле $A((t))$. Это вычисление приводит к части формальной (или локальной) теоремы Римана-Роха для гладких морфизмов в относительной размерности 1. При этом во всей истории большую роль играет символ Конту-Каррера.


© МИАН, 2024