|
СЕМИНАРЫ |
Совместный общематематический семинар СПбГУ и Пекинского Университета
|
|||
|
Szegö measures and vibration of Krein strings R. V. Bessonovab a Saint Petersburg State University b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences |
|||
Аннотация: We give a dynamical characterization of Szegö measures on the real line. Szegö condition for a measure $$\int_{\mathbb{R}}\frac{\log w(x)}{1 + x^2}\,dx > -\infty,$$ is proved to be equivalent to a stable propagation of waves on an associated Krein string. Related results in scattering theory of Dirac operators will be also discussed. Joint work with Sergey Denisov (University of Wisconsin-Madison). The author is supported by the Russian Science Foundation grant 19-71-30002. Язык доклада: английский |