RUS  ENG
Полная версия
СЕМИНАРЫ

Функциональный анализ и его приложения
13 июня 2024 г. 08:30, г. Ташкент, Онлайн на платформе Zoom


Noncommutative ergodic theorems for nets

S. N. Litvinov

Pennsylvania State University

Аннотация: Given a semifinite von Neumann algebra $\mathcal M$ equipped with a faithful normal semifinite trace $\tau$, we prove that the spaces $L^0(\mathcal M,\tau)$ and $\mathcal R_\tau$ are complete with respect to pointwise – almost uniform and bilaterally almost uniform – convergences in $L^0(\mathcal M,\tau)$. Then we show that the pointwise Cauchy property for a special class of nets of linear operators in the space $L^1(\mathcal M,\tau)$ can be extended to pointwise convergence of such nets in any fully symmetric space $E\subset \mathcal R_\tau$, in particular, in any space $L^p(\mathcal M,\tau)$, $1\leq p<\infty$. Some applications of these results in the noncommutative ergodic theory are obtained.

Website: https://us06web.zoom.us/j/7803181064


© МИАН, 2024