RUS  ENG
Полная версия
СЕМИНАРЫ



${{\mathcal{P}}_{mcv}}$-measure and ${{\mathcal{P}}_{mcv}}$-capacity

M. B. Ismoilov

National University of Uzbekistan named after M. Ulugbek, Tashkent

Аннотация: In this work, introduces important objects of the theory of $m$-convex $\left( m-cv \right)$ functions, $mcv$-polar sets, ${{\mathcal{P}}_{mcv}}$-measures $\omega *(x,E,D)$, $mcv$-capacity quantities $\text{ }{{\mathcal{P}}_{mcv}}(E,D)=-\int\limits_{D}{\omega *(x,E,D)dV}$ and the capacity of the condenser $C\left( E,D \right)$ in the class of $m$-convex functions. Similarly to harmonic measures in classical potential theory, ${{\mathcal{P}}_{mcv}}$-measures have the property of extremality in the class of $m$-convex functions.

Website: https://us02web.zoom.us/j/8022228888?pwd=b3M4cFJxUHFnZnpuU3kyWW8vNzg0QT09


© МИАН, 2025