RUS  ENG
Полная версия
СЕМИНАРЫ

Семинары отдела математической логики "Теория доказательств" и "Logic Online Seminar"
2 июня 2025 г. 17:00, г. Москва, МИАН (ул. Губкина, 8), ауд. 313 + онлайн


Топологические универсальные алгебры: симбиоз алгебры и топологии

O. V. Sipacheva

Lomonosov Moscow State University



Аннотация: Топологическая универсальная алгебра, или просто топологическая алгебра, — это алгебраическая система без отношений, снабжённая топологией, относительно которой все операции непрерывны. Многообразием топологических алгебр называется любой класс топологических алгебр данной сигнатуры, замкнутый относительно произвольных произведений и перехода к подалгебрам и факторалгебрам. Согласно знаменитой теореме Биркгофа класс алгебр является многообразием тогда и только тогда, когда он задаётся некоторой совокупностью тождеств, т.е. состоит в точности из тех алгебр, в которых выполнены все тождества из данной совокупности.
Топологические и алгебраические свойства топологических алгебр удивительным образом связаны друг с другом. В докладе рассматриваются топологические свойства, вытекающие из выполнения тех или иных тождеств, и — что наиболее интересно — тождества, выполнение которых вытекает из наличия тех или иных топологических свойств. Ещё в прошлом веке такие тождества были найдены для импликаций, связывающих разные аксиомы отделимости. В докладе основное внимание уделено вопросу, при каких условиях факторалгебра топологической алгебры с фактортопологией является топологической алгеброй, т.е. какие тождества должны выполняться в многообразии топологических алгебр для того, чтобы факторные гомоморфизмы алгебр из этого многообразия сохраняли непрерывность операций. Некоторое внимание уделяется также алгебрам с топологиями, относительно которых все операции раздельно непрерывны; они обладают любопытными свойствами, выгодно отличающими их от топологических алгебр.

Язык доклада: английский


© МИАН, 2025