RUS  ENG
Полная версия
СЕМИНАРЫ



О (не)разрешимости первопорядковых теорий метрических, векторных и гильбертовых пространств — 1

К. А. Ковалев, Л. В. Дворкин

Аннотация: В рамках четырёх запланированных заседаний семинара мы намерены детально изучить работу
R.M. Solovay, R.D. Arthan, J. Harrison. Some new results on decidability for elementary algebra and geometry. Annals of Pure and Applied Logic 163(12), 1765–1802, 2012. https://doi.org/10.1016/j.apal.2012.04.003
В центре внимания окажутся вопросы (не)разрешимости первопорядковых теорий метрических, вещественных векторных, нормированных, банаховых, предгильбертовых и гильбертовых пространств. Данные теории естественным образом выражаются в двухсортном языке, где один сорт отвечает за скаляры, а другой — за векторы.
Оказывается, что проверку выполнимости первопорядковых формул в векторных, предгильбертовых и гильбертовых пространствах можно свести к проверке выполнимости в поле вещественных чисел. Последняя, как известно, разрешима в силу теоремы Зайденберга–Тарского.
При переходе к метрическим, нормированным и банаховым пространствам ситуация кардинально меняется: здесь становится возможной интерпретация арифметики второго порядка, что влечёт за собой неразрешимость и даже неарифметичность теорий этих пространств. Однако, несмотря на общую неразрешимость, существуют разрешимые фрагменты. В частности, чисто универсальный и чисто экзистенциальный фрагменты теории нормированных пространств, а также универсально-экзистенциальный фрагмент теории метрических пространств разрешимы.
Мы планируем рассмотреть доказательства упомянутых результатов. Предполагается, что слушатели обладают базовыми знаниями о первопорядковых теориях и их моделях.


© МИАН, 2025