|
|
| СЕМИНАРЫ |
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
|
|||
|
|
|||
|
Конечная порожденность абелизаций ядер Джонсона А. А. Гайфуллинab a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва b Московский государственный университет имени М. В. Ломоносова |
|||
|
Аннотация: Ядром Джонсона (или подгруппой Джонсона) называется подгруппа группы классов отображений ориентированной замкнутой поверхности, порожденная скручиваниями Дена вдоль всевозможных простых замкнутых кривых, разделяющих поверхность. Эта подгруппа играет ключевую роль при изучении группы Торелли - ядра действия группы классов отображений на гомологиях поверхности. В центре внимания специалистов давно находятся вопросы о различных свойствах конечности (или бесконечности) для подгрупп Торелли и Джонсона и их аналогов в группах автоморфизмов свободных групп, а именно, о свойствах конечной порожденности, конечной определенности, конечной порожденности групп гомологий и т.п. В течение последних 15 лет в ряде работ было доказано, что ядро Джонсона рода |
|||