RUS  ENG
Полная версия
СЕМИНАРЫ

Семинар им. В. А. Исковских
2 октября 2025 г. 18:00, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)


Уравнение Маркова

И. В. Вьюгин



Аннотация: Изучая приближения действительных чисел рациональными, А.А. Марков в 1879 году вывел новое диофантово уравнение:
$$x^2+y^2+z^2=3xyz,$$
которое впоследствии стало называться уравнением Маркова. Это уравнение выделяется тем, что на множестве его натуральных решений "троек Маркова" есть естественная структура графа-дерева. В последние годы под влиянием работ Бургейна, Гамбурда и Сарнака уравнение Маркова стали изучать над полем вычетов по простому модулю $p$. В прошлом году Ченом было опубликовано завершение очень сложного доказательства основной гипотезы, утверждающей, что для всех достаточно больших простых $p$ все решения уравнения Маркова над полем вычетов по модулю $p$ получаются из его целых решений редукцией по модулю $p$. Доказательство гипотезы основывается на нескольких работах, использующих сильно различные методы.
Я планирую рассказать об описанных выше продвижениях, в том числе, и о классических результатах Маркова, а также о совсем новых обобщениях на $n$-мерных случай.


© МИАН, 2025