|
|
| СЕМИНАРЫ |
|
Анализ сигналов и пространства функций
|
|||
|
|
|||
|
On contractive inequalities in the Dirichlet range И. К. Злотников Norwegian University of Science and Technology |
|||
|
Аннотация: For $$\|f\|_{\alpha,p}^p=|f(0)|^p+\int_0^1\left(\frac{d}{dt}M_p^p(r,f)\right)(1-r^2)^{\alpha-1}<\infty,$$ where We investigate the following problem: for which parameters \begin{equation} \label{eq:1} 0<\alpha<\beta<\infty,\,\, 0<p<q<\infty,\,\, \textrm{and}\,\, \frac{\alpha}{p}=\frac{\beta}{q} \end{equation} the inequality \begin{equation}\label{eq:2} \|f\|_{\beta,q}\leq \|f\|_{\alpha,p} \end{equation} holds for every function The assumptions \ref{eq:1} imposed on the parameters are motivated, in particular, by the conformal invariance of classes $$T_{w,\alpha/p}f(z)=f\left(\frac{w-z}{1-\bar{w}z}\right)\frac{(1-|w|^2)^{\alpha/p}}{(1-\bar{w}z)^{2\alpha/p}}$$ also belongs to Kulikov [2] established inequality \ref{eq:2} for all We also explore the relation between the classes Apα and the classical Besov spaces. The talk is based on a joint work with Ole Brevig, Aleksei Kulikov and Kristian Seip. Список литературы
* Zoom ID: 675-315-555, пароль: mkn |
|||