RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2010, том 22, выпуск 1, страницы 82–97 (Mi aa1172)

Эта публикация цитируется в 13 статьях

Статьи

The power law for the Buffon needle probability of the four-corner Cantor set

F. Nazarova, Y. Peresbc, A. Volbergde

a Department of Mathematics, University of Wisconsin
b Departments of Statistics and Mathematics, University of California, Berkeley
c Microsoft Research, Redmond
d The University of Edinburgh
e Department of Mathematics, Michigan State University

Аннотация: Let $\mathcal C_n$ be the $n$th generation in the construction of the middle-half Cantor set. The Cartesian square $\mathcal K_n$ of $\mathcal C_n$ consists of $4^n$ squares of side-length $4^{-n}$. The chance that a long needle thrown at random in the unit square will meet $\mathcal K_n$ is essentially the average length of the projections of $\mathcal K_n$, also known as the Favard length of $\mathcal K_n$. A classical theorem of Besicovitch implies that the Favard length of $\mathcal K_n$ tends to zero. It is still an open problem to determine its exact rate of decay. Until recently, the only explicit upper bound was $\exp(-c\log_*n)$, due to Peres and Solomyak ($\log_*n$ is the number of times one needs to take log to obtain a number less than 1 starting from $n$). In the paper, a power law bound is obtained by combining analytic and combinatorial ideas.

Ключевые слова: Favard length, four-corner Cantor set, Buffon's needle.

MSC: Primary 28A80; Secondary 28A75, 60D05, 28A78

Поступила в редакцию: 20.10.2008

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2011, 22:1, 61–72

Реферативные базы данных:


© МИАН, 2024