Аннотация:
В работе доказывается одностороннее неравенство Литлвуда–Пэли для непересекающихся прямоугольников на плоскости $\mathbb R^2$ в $L^p$-метрике при $0<p\le2$. Этот результат можно рассматривать либо как распространение результата С. В. Кислякова и Д. В. Парилова на плоскость (ими рассматривалась одномерная ситуация), либо как обобщение результата Журне (он рассматривал непересекающиеся параллелепипеды в пространстве $\mathbb R^n$ произвольной размерности, но показатель $p$ предполагался лежащим в отрезке $(1,2]$). Доказательство совмещает технику, используемую С. В. Кисляковым и Д. В. Париловым, с техникой, “двойственной” рассуждениям Журне.