RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2010, том 22, выпуск 3, страницы 107–141 (Mi aa1188)

Эта публикация цитируется в 5 статьях

Статьи

Quantum Toda chains intertwined

A. Gerasimovab, D. Lebedeva, S. Oblezina

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b School of Mathematics and Hamilton Mathematics Institute, Trinity College, Dublin, Ireland

Аннотация: An explicit construction of integral operators intertwining various quantum Toda chains is conjectured. Compositions of the intertwining operators provide recursive and $\mathcal Q$-operators for quantum Toda chains. In particular the authors earlier results on Toda chains corresponding to classical Lie algebra are extended to the generic $BC_n$- and Inozemtsev–Toda chains. Also, an explicit form of $\mathcal Q$-operators is conjectured for the closed Toda chains corresponding to the Lie algebras $B_\infty$, $C_\infty$, $D_\infty$, the affine Lie algebras $B^{(1)}_n$, $C^{(1)}_n$, $D^{(1)}_n$, $D^{(2)}_n$, $A^{(2)}_{2n-1}$, $A^{(2)}_{2n}$, and the affine analogs of $BC_n$- and Inozemtsev–Toda chains.

Ключевые слова: quantum Toda Hamiltonians, elementary intertwining operator, recursive operator, quantization Pasquier–Gaudin integral $Q$-operator.

Поступила в редакцию: 11.01.2010

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2011, 22:3, 411–435

Реферативные базы данных:


© МИАН, 2024