RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2010, том 22, выпуск 6, страницы 91–108 (Mi aa1215)

Эта публикация цитируется в 1 статье

Статьи

On ill-posedness of free-boundary problems for highly compressible two-dimensional elastic bodies

Yu. V. Egorova, E. Sanchez-Palenciab

a Université Paul Sabatier, Laboratoire MIP, Toulouse, France
b Université Pierre et Marie Curie, Laboratoire de Modélisation en Méchanique, Paris, France

Аннотация: Some problems of elasticity theory related to highly compressible two-dimensional elastic bodies are considered. Such problems arise in real elasticity and pertain to some materials having negative Poisson ratio. The common feature of such problems is the presence of a small parameter $\varepsilon$. If $\varepsilon>0$, the corresponding equations are elliptic and the boundary data obey the Shapiro–Lopatinsky condition. If $\varepsilon=0$, this condition is violated and the problem may fail to be solvable in distribution spaces. The rather difficult passing to the limit is studied.

Ключевые слова: two-dimensional elasticity, negative Poisson ratio, elliptic boundary value problems.

Поступила в редакцию: 29.06.2010

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2011, 22:6, 913–926

Реферативные базы данных:


© МИАН, 2024