Аннотация:
The cosine of the Friedrichs angle between two subspaces is generalized to a parameter associated with several closed subspaces of a Hilbert space. This parameter is employed to analyze the rate of convergence in the von Neumann–Halperin method of cyclic alternating projections. General dichotomy theorems are proved, in the Hilbert or Banach space situation, providing conditions under which the alternative QUC/ASC (quick uniform convergence versus arbitrarily slow convergence) holds. Several meanings for ASC are proposed.
Ключевые слова:Friedrichs angle, method of alternating projections, arbitrary slow convergence.